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Abstract. We consider a case of self-organization in which a relatively
small number N of data points is mapped on a larger number M of
nodes. This is a reverse situation to a typical clustering problem when
a node represents a center of the cluster of data points. In our case the
objective is to have a Gaussian-like distribution of weights over nodes
in the neighbourhood of the winner for a given stimulus. The fact that
M > N creates some problem with using learning schemes related to
Gaussian Mixture Models. We also show how the objects, Chinese charac-
ters in our case, can be topologically ordered on a surface of a 3D sphere.
A Chinese character is represented by an angular integral of the Radon
Transform (aniRT) which is an RTS-invariant 1-D signature function of
an image.
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1 Introduction

In our ongoing work on multimodal integration of visual and auditory stimuli
e.g. [4,15–17] we consider a network of self-organizing modules. Each module
performs a self-organizing mapping based, in principle, on Kohonen’s algorithm
[8,19]. The main difference between our case and a typical clustering algorithm
stems from the fact that we have the number of stimuli (data points) N smaller
than the number of neurons (nodes) M . In order to maintain the redundancy of
the stimuli representation we keep the ratio M/N ≈ 16 . . . 20, the number being
inferred from the work [12]. In the case on an on-line training [13] additional
nodes are generated to maintain the ratio constant. We try to approximate the
postsynaptic responses of our module by a Gaussian-like shape over the neurons
in the neighbourhood of the winner so that the variants of the stimuli are mapped
into the same neighbourhood. The other feature of our model is that the nodes
are randomly positioned on a surface of a sphere. In the previous works we used
only the northern hemisphere, here we extent the latent space to be the full
unity 3-D sphere. The stimuli and the weights are also normalised to be the
D-dimensional unity vectors.
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The objectives of this paper are as follows. Firstly, we would like to consider
a possibility of applying one of many available versions of probabilistic SOMs
stemming from the fundamental Gaussian Mixture Models (GMM). From the
significant body of literature on these topics we point to the following recent
works [3,7,10,11] and the classics [1]. Secondly, we would like to demonstrate
the spherical latent space. As an example of objects to be mapped, we have
selected Chinese characters rendered with a specific font and selected from the
Unicode CJK table [18].

2 The Stimuli

The Chinese characters from the Unicode table with hex codes from 4E00 to
9FA5 have been rendered using the Microsoft JhengHei UI font of size 32 points.
Such rendering produces black-and-white binary images of size 43×43 pixels. For
each character image we calculate a signature function, a vector, as an angular
integral of the Radon transform (aniRT). Details can be found in [14]. The size
of the aniRT vector is equal to the diagonal of the image, 61 in this case. For
further processing we select D = 22 central components sufficient for a detailed
representation. In Fig. 1 we illustrate aniRT vectors for randomly selected 8
Chinese characters. In general, we have pre-calculated aniRT vectors for all Chi-
nese characters from the Unicode table. After that, the aniRT vectors are pro-
jected up on the (D + 1)-dimensional hypersphere. A short note on the selected
method of projection is given in the appendix.
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Fig. 1. The aniRT vectors for selected Chinese characters rendered with the Microsoft
JhengHei UI font of size 32 points
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3 The Self-organizing Module

The self-organizing module that form the networks modelling multimodal inte-
gration [15–17] interprets D-dimensional stimuli xn in a latent space which is
a unity 3-D sphere. There are M neurons/nodes randomly distributed on the
surface of the sphere, each node is characterised by the 3-D position vector
vm and a D-dimensional weight vector wm. Random, rather than on a regular
lattice, distribution of nodes seems to be more biologically plausible. The stim-
uli are organized into a D × N matrix, X, one stimulus xn per column. The
weight vectors, wm are organized in a M × D weight matrix, W , one weight
vector per row. Similarly, the position vectors, vm are organized in a M × 3
position matrix, V , one location vector per row. All stimuli, weight vectors
and position vectors are located on the respective unity hyper-spheres, so that
||xn|| = 1, ||wm|| = 1, ||vm|| = 1. Unlike in many clustering-related applica-
tions where number of data points xn, is greater than the number of nodes, that
is N > M , in our perceptual modelling case, we maintain a stochastically con-
stant ratio of nodes per stimuli, γ = M

N ≈ 16 to 20 to allow for robustness of the
stimuli representation. The specific value has been inferred from the columnar
organization of the brain [12].

The fact that the number of stimuli is smaller that the number of weights
reverses the classical clustering problem. In our case, for a given stimulus xn

there should be a central node vm with the weight vector at this node wm being
approximately equal to the stimulus, and the neighbouring nodes having weights
“Gaussianly” close to the stimulus.

At this point it would be natural to expect that any Gaussian Mixture Model
[1] should solve the problem of placing required weights over the nodes allocated
to a specific stimuli. We have started with a model inspired by the Elastic Nets
[2,5]. Skipping standard details we ended up with the following log-likelihood to
minimize:

E(W ) = −
M∑

m=1

log
N∑

n=1

N (xn,wm, Σn) +
M∑

m=1

1

2dm

∑

j∈Λm

νmj ||wm −wj ||2Cm
(1)

The first term describes a sum of N Gaussians N (xn,wm, Σn), whereas the
second term promotes clustering of weights around the winning nodes. The nodes
vj with weight vector wj are located in the neighbourhood Λm of the n-th node,
see below. From Eq. (1) it is easy to derive the following iterative expression for
the next value of the weight matrix, W .

W = (I + βU)−1(R · XT + βŴΛ) (2)

where R is a M × N matrix of responsibilities which are formed from ratios
of Gaussians, X is a D × N matrix of stimuli/data points, ŴΛ is a matrix of
weighted means of weights in the neighbourhoods Λ, and U is a diagonal matrix
formed from the distances between the position vectors in the neighbourhood vj .
Equation (2) converges very quickly to a matrix W , however, instead of spreading
winning nodes according to the stimuli xn it does the opposite, namely clustering



SOM on a Sphere 455

data points to a small number of weights. This behaviour stems from the fact
that there are not enough data points for a given number of weights and nodes.

We have adopted the solution originating from the stochastic approximation
considerations, which results in solutions close to the original Kohonen learning
law, with the additional benefit that the algorithm is obtained by minimization
of an energy function. We follow the original paper [6] developed later by [9]. For
each stimulus xn we calculate the post-synaptic activations, dn = W ·xn and find
the node vn

m for which the activation attains the maximum. The neighbourhood
Λn of the winning node is defined by a Gaussian function with the variance σ2

Λn

centered at the node vn
m. The neighbouring nodes are located inside the radius

of rΛn
= 2σΛn

. Note that the nodes are randomly distributed on a surface of
a 3-D sphere. The area of the sphere surface is initially allocated equally to all
N stimuli, hence we have 4π12/N = πr2Λ, and rΛ = 1/

√
N , or σ2

Λ = 1/(4N).
As a result, we include in the neighbourhood of the winning node vn

m, all nodes
located at vjn for which the inner product satisfy the following condition:

jn ∈ Λn if vn
mvT

jn > cos(rΛn
); Mn = |Λn| (3)

where Mn is the number of nodes in the neighbourhood Λn. Now, in a way
similar to [9], we defined the energy function as:

E(W ) =
N∑

n=1

En; En =
1
2

∑

jn∈Λn

||wjn − xT
n ||2 exp

(
−||vn

m − vjn ||2
2σ2

Λn

)
(4)

To minimize the energy, we calculate the derivative with respect to each weight
vector:

∂En

∂wjn

= (wjn − xT
n ) exp

(
vn

mvT
jn

− 1
σ2

Λn

)
(5)

The above expression results in a Kohonen-like learning law that, for the all
weights WΛn

in the neighbourhood Λn specified in Eq. (3), and taking into
account the fact that weights need to be kept on the D-dimensional hypersphere,
can be written in a way equivalent to the “dot-product” law of the following form

WΛn
(t + 1) = WΛn

(t) + η(t)Λn(t)(xT
n − dΛn

· WΛn
(t)), dn = WΛn

· xn (6)

where the neighbourhood function is

Λn(t) = exp

(
VΛn

· vT
jn

− 1
σ2

Λn
(t)

)
(7)

Note that the sizes of the matrices WΛn
and VΛn

are Mn × D and Mn × 3,
respectively. Operations between vectors and matrices in Eq. (6) are performed
on the row-by-row basis. The learning gain η is reduced according to another
Gaussian curve η(t) = exp(−t2/(2ση)), where ση is selected so that η(T/2) = 0.5,
T being the total number of epochs. This choice of ση ensures a good proportion
between the ordering and the convergence phases. The σ2

Λn
(t) which describes

the narrowing of the neighbourhood is reduced linearly from the initial value
σ2

Λn
(1) to its final value σ2

Λn
(T ).
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4 Self-organization

In general, the learning law of Eq. (6) can be applied in an on-line/incremental
fashion similar to that described in [13]. In this section, we concentrate on demon-
strating learning on the sphere, hence, we select randomly N = 80 Chinese char-
acters as described in Sect. 2. The results of learning on the sphere are presented
in Fig. 2. For N = 80 the number of nodes is M = 20 × N = 1600. Since the
dimensionality of stimuli is D = 23, the sizes of the matrices X, V and W are
23 × 80, 1600 × 3 and 1600 × 23, respectively. In Fig. 2 the neighbourhood for
each stimulus xn is marked by coloured dots showing the positions of the VΛn

.
The lines indicate the Voronoi tessellation with respect to the positions of the
winning nodes. Subject to projection distortion each neighbourhood contains
approximately 20 nodes, and the tessellation cells are approximately equal in
area. The 3-D view generated by MATLAB uses the orthographic projection,
therefore the cells close to the edges appear to be more densely packed. The
sphere is semi-transparent, therefore, the characters on the hidden surface are

Fig. 2. Learning on a sphere: 3-D view and projection of two hemispheres
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Fig. 3. A map of postsynaptic activities in the neighbourhood of a single stimulus

visible. Our projection method maintains the same proportion along the diam-
eter and the semi-circle, as a consequence looks less distorted.

In Fig. 3 we present a surface of postsynaptic activities for one selected stim-
ulus xn, namely the character (hex ‘5ADC’) that can be found in the upper-
central part of the northern hemisphere. The neighbourhood Λn consists of 20
nodes VΛn

with related weights WΛn
. The components of the vector of postsy-

naptic activities dΛn
= WΛn

· xn are plotted against the position of the nodes.
The positions of the nodes are projected down on a plane z = 0.9 and marked
with dots in Fig. 3. We use the Delaunay triangulation to create the surface.

As a final comment, please note that the topological ordering of Chinese char-
acters is not done in the order a Chinese speaker might expect, e.g., with respect
to radicals. The ordering is strictly based on the aniRT vectors representing the
characters as described in Sect. 2.

Conclusion

We have considered problems related to self-organization on a surface of a 3-D
sphere in a situation when a number of stimuli is significantly lower than the
number of nodes. In this case algorithms originated from the Gaussian Mixture
Models might not produce the desired allocation of stimuli to a clusters of nodes.
We used an energy function originating from probabilistic considerations which
results in a learning law equivalent to the Kohonen-like dot-product law that
delivers satisfactory postsynaptic behaviour.

Appendix

Projections between a sphere and a plane related to the problem of creating
Earth maps have a long and varied history. The list of available projections is
rather long and the Wikipedia1 is a good point to start.
1 https://en.wikipedia.org/wiki/List of map projections.

https://en.wikipedia.org/wiki/List_of_map_projections
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Fig. 4. Projection of a point A from the inside of the n-dimensional hypersphere (shown
as a unity circle in 2-D space), onto the (n+1)-dimensional unity hypersphere (shown
as a point B on the 3-D sphere)

Refer to Fig. 4 and consider an n-dimensional vector x̄ (point A) that needs
to be projected onto the (n+1)-dimensional unity hypersphere to obtain a unity
vector x (point B). In order to minimise distortions, we select the position of
the point B on the grand circle proportional to the position of the point A on
the radius. Hence:

α =
π

2
‖x̄‖ (8)

From this it is easy to obtain the vector x as:

x = [x̃, cos α] = [kx̄, cos α] , k =
sinα

‖x̄‖ =
π sin α

2α
(9)

Projecting down the (n + 1)-dimensional vector x of Eq. (9) from the surface
of the (n + 1)-dimensional sphere we obtain the related n-dimensional vector x̄
located inside the n-dimensional sphere in the following way:

x̄ =
1
k

· x̃ =
1
k

· x1:n (10)
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